
56

S E S 2 0 1 5
E l e v e n t h S c i e n t i f i c C o n f e r e n c e w i t h I n t e r n a t i o n a l P a r t i c i p a t i o n

S P A C E , E C O L O G Y , S A F E T Y
4 – 6 November 2015, Sofia, Bulgaria

APPROACH AND DEVELOPMENT OF TOOLS FOR DIFFERENT VARIANTS
OF SPACE MISSIONS SIMULATION DEFINITION AND EXECUTION

Atanas Atanassov

Space Research and Technology Institute – Bulgarian Academy of Sciences

e-mail: At_M_Atanassov@yahoo.com

Keywords: space missions design; multi-physic models simulation; parallel calculations.

Abstract: Flexible approach for synthesis of complex simulation model containing different physical and
mathematical models is presented. Different consequences of calculations in field of space mission design are
based on some previously developed classes of objects. A simple command language for composition of
cyclograms is presented. Execution of these cyclograms is based on developed interpreter.

Introduction

The development of flexible tools for space mission design and analysis has exclusive
importance for decreasing of efforts, price and time [1]. The recent technological advances in the field
of multicore processors and other components are challenges and good base for experiments in this
direction.

Algorithms and program system for multi-satellite missions and experiments [2] are under
development at STIL-BAS, branch in Stara Zagora. Improving flexibility and possibilities for multi-
physics space simulations of the program system are shown in the present paper.

Programming system for multi-satellite mission design

The programming system for space mission design is under development. Execution of
different types of tasks is possible. These tasks are related to orbital equations integration, geometric
and physical quantities along the orbits, situation problems solving, satellite experiments simulation,
visualization and etc. [2, 6].

Unfortunate, calculation scenarios, containing simultaneously application of more than one
actual integrator [3] and situation problems solver [4] using special developed union of pools model [5]
for parallelization, wasn’t possible.

Problem statement

Logical mutually connected calculations will be treated as calculation flow. There are different
levels of mutual connectivity. The higher level of connectivity demands mutual connection between
results in the frame of one calculation flow. The low level of connectivity within the calculation flow is
due to applying of unifying/common algorithms. Application of parallelization to one calculation flow
depends from availability of appropriate platform and specifics of calculations. Two reasons are
possible for calculation flows parallelization - possibilities for optimal use of computer system and
development of complex multi-physic models and calculation algorithms.

Each calculation flow could consist from one or more consecutive stages. The parallelization
between calculation flows is possible related to particular stages only. The different calculation flows
are executed asynchronously until point of synchronization when exchange of results between them is
necessary.

For instance, one calculation flow could contains orbital motion integration for set of satellites
as first stage, calculation of different quantities heaving geometrical or physical nature as second
stage, solving situation problems as third stage and etc. At the same time, a second calculation flow
engaged with computation about other set of satellites is possible too. Other calculation flow could be
related with space debris. Some exchange of results between separate flows after appropriated
stages could be based on situation problems connected with mutual situations between objects

mailto:At_M_Atanassov@yahoo.com

57

evolved in different flows. The realization of such scenarios demands synchronization between
respective/relevant calculation stages from the calculation flows.

“Computation flows” is program model for presentation of complex multi-physics applications
based on higher abstraction level. This is formal thinking approach which demands appropriate
specific program models and tools.

The joining of some calculation flows put the question about effective use of multi-processor
system. We will have in mind exclusively shared memory system below in this paper.

Control of calculations

Finite automata approach is applied for realization of flexible scheme of calculations’ control.
The algorithm is based on series of commands (cyclogram) execution. The algorithm reads and
recognizes a series of commands and transits in the relevant state related to some code execution.
Additional tasks are included for initialization of actual integrators and situation processors, in
additional to the basic tasks listed above. The compilation of particular variant of calculation scheme
consists of ordering appropriated commands. The list of commands developed at the present stage is
presented in table 1.

Table 1.

All commands are described by user-defined type command (fig. 1). This type contains
different number of parameters/attributes and semantic specific for each command. The first
parameter is common for all commands and contains the name. Other parameters of the
commands are presented by integer or real types. Operator UNION is used for description of all
variants of command types (fig. 1), because each command has individual format,

The couple of commands Cycle and End_cycle are important construction for repetition of
entire cyclogram or subseries of commands closed between them. All commands which must be
repeated are inserted between the Cycle and End_cycle commands. The commands for initialization
are placed at the beginning, before the command Cycle.

Command name First parameter Second parameter Third parameter
Init_Integ p_AI_ind p_IVP_ind
Init_SitAnal ini_AI_ind ini_StPr_ind
Init_Union
Integ s_AI_ind s_IVP_ind
'Integ Union' Union_ind
'Trajekt param' t_IVP_ind
'Sit anal' run_StPr_ind
'Display' dsp_StPr_ind
'Get_AI_rezult' u_IVP_ind
'Cycle' begin_time final_time step_in_time
End_cycle
END

58

 Fig. 1. User-defined type used for cyclogram commands definition

The execution of the commands is based on object-descriptors heaving specific user-defined

types [6]. These types appear as templates for description of objects which could be created and used
for computational control. For instance, pool_par represents actual integrators and situation problem
solvers. The type IVP_par represents the solving of initial value problems. The type TrajParam
defines calculation of some parameters along the orbits. The types SitProblems and PoolThUnion
are used for definition of situation problems and union of pools of threads.

Command interpreter

Finite automata approach is used for new version of the program system. Program fragment
on figure 3 accepts series of commands and interprets them in sequent mode. The algorithm
recognizes the current command and transit to the respective stage and call to corresponding solver
or calculation code. Each command leads to calculation of portion of final results. Different primitive of
calculations are used like elemental building units for assembling calculation models in one scientific
field. A complex model can contains some objects from equal type. Every object could be presented
through different characteristics or parameters. So each object is described through user-defined type.
Such types are shown in [6]. Objects of the same type are united in class of objects. These classes
are created by special polymorphic subroutine [6]. These types contain different specific attributes.
Some of them represent geometric or physical quantities which accept values in some interval. Other
attributes represent meta-data – addresses and sizes of data structures.

Five object-descriptors are defined through separate user-defined types at the present stage.
The access to particular object at random point of the program is possible by global class-descriptor
(named common area in fortran) (fig. 2a). This common area contains the number of objects in the
class and address of the array in computer storage containing objects of the class (fig. 2a). For
example, named common area /c_AIs / contains descriptor of the class of parallel actual solvers
based on pool of threads program model- integrators of ordinary differential equations and situation
processor solvers. The class of “initial values problems” objects is accessible through named common
area / c_IVPs / (fig. 2b). The class of situation problems is presented trough class-descriptor and
common area / c_StPrs /. The class of “union of parallel solvers” could be accessed through common
area / c_UPths /. Figure 2b illustrates the access to classes of objects based on pointers.

 type command !
 character*17 name
 UNION
 MAP
 integer num_com ! The zero element
 ! contain number of
 ! commands
 END MAP
 MAP ! AI preparation
 integer p_AI_ind ! (p)- za pointer
 integer p_IVP_ind
 END MAP
 MAP ! IVP initialization
 integer s_AI_ind ! index of integrator
 integer s_IVP_ind ! index of IVP
 END MAP
 MAP ! Init_SitAnal
 integer ini_StPr_ind ! index to solver
 integer ini_AI_ind ! index to intrgrator
 END MAP
 MAP ! Creation and initialization of Union
 integer ins_AI_ind ! index of the solver
 integer com_ind_integ ! multiple integration
 END MAP
 MAP ! Multiple IVPs integration
 integer Union_ind ! index of Union
 integer index_IVP(0:10)
 integer union_atr(2)
 END MAP

 MAP ! Get data after Union execution
 integer u_IVP_ind ! index of IVP
 END MAP
 MAP ! Traject. param. calculation
 integer t_IVP_ind
 END MAP
 MAP ! Situation analysis
 integer run_StPr_ind ! index of solver
 integer run_AI
 END MAP
 MAP ! command ‘Disply’
 integer dsp_StPr_ind
 END MAP
 MAP ! Cycle
 real*8 begin_time
 real*8 current_time
 real*8 final_time
 real*8 step_in_time
 real*8 shift_time
 integer end
 END MAP
 MAP ! End cycle
 integer back ! counter return 'back' steps
 END MAP
 END UNION
 end type command

59

The object classes are dynamic objects. The addition of each new object to respective class is
connected with changing of the address in the storage.

Fig. 2. An access to classes of objects is shown. (a) Description of object classes. (b) Allocation of object classes
according to addresses.

The addresses of the real data, which are pointed as actual arguments, are contained in

attributes of objects-descriptors. Each object-descriptor is used for simulations in the frame of one
calculation flow.

Figure 3 represents fragment of the interpreter of command series (cyclograms). Actual
arguments of the subroutines don’t point directly to transmit data. The access to data addresses is
provided. The data transmitting is provided through special developed object-descriptors [6]. Each
command has specific parameters for synonymous access to necessary data.

Actual parameters of command Integ for multi satellites’ orbits integration are presented on
figure 3 in some details for illustration. Addresses of data passed as actual arguments to respective
subroutines related to other commands are described through analogous approach.

The sophisticated description of actual parameters which is shown on figure 3 is result from
application of object-descriptors and command parameters for assigning command to particular
calculation flow. The commands initiate usually big portions of calculations and so the pointed
sophistication doesn’t decrease substantially the speedup.

The command parameters play important semantic role connected with building of calculation
algorithm. Except parameters which are defined in the course of cyclogram compilation, there are
other hidden parameters which are used for control of cyclogram execution. For instance, the values
of the two parameters End_cycle%back and End_cycle%end are determined from preprocessor
depending from their mutual disposition in the frame of cyclogram. The first parameter provides the
return of command counter to beginning of the cycle, and the second of them – exiting from the cycle.

A preprocessor for preliminary command cyclogram analysis is under development. It checks
the syntax of used commands and determines some of their parameters. The preprocessor executes
an automatic adjustment of commands for cycle organization.

 integer AIs_descriptor_adr
 common /c_AIs/num_AIs,AIs_descriptor_adr
 type (pool_par) AIs(num_AIs)
!__________________________________
 integer IVPs_descriptor_adr
 common /c_IVPs/num_IVPs,IVPs_descriptor_adr
 type (IVP_par) IVPs(num_IVPs)
!__________________________________
 integer TrPas_descriptor_adr
 common /c_TrPas/num_TrPas, TrPas_descriptor_adr
 type (TrajParam) TrPas(num_TrPas)
!__________________________________
 integer StPrs_descriptor_adr
 common /c_StPrs/num_StPrs,StPrs_descriptor_adr
 type (SitProblems) StPrb(num_StPrs)
!_____________________________________
 integer UPths_descriptor_adr
 common /c_UsPTh/num_UsPth,UPths_descriptor_adr
 type (PoolThUnion) Union_atr(num_UsPth)
 (a)

 POINTER(AIs_descriptor_adr,AIs)
 POINTER(IVPs_descriptor_adr,IVPs)
 POINTER(TrPas_descriptor_adr,TrPas)
 POINTER(StPrs_descriptor_adr,StPrb)
 POINTER(UPths_descriptor_adr,Union_atr)
 (b)

60

Fig. 3. Fragment of subroutine Drive_M. This fragment realizes interpretation of commands. The command Integ

is presented in details.

Conclusion

A development of interpreter of commands’ cyclogram is presented. The application of such
interpreter allows more flexible and adaptable execution of computation scenarios when complex
multi-physic model are simulated.

Further development of presented approach demands development of interactive tools
(appropriated dialogue) for definition of objects’ attributes and cyclogram compilation.

References:

1. Wertz, J.R., Larson, W.J., 1999. Space Mission Analysis and Design, third ed. Microcosm Press, Kluwer
Academic Publishers.

2. Atanassov, A.M., 2013Program System for Space Missions Simulation - First Stages of Projecting and
Realization. SES 2012, 209-214.

3. Atanassov, A.M., Parallel, adaptive, multi-object trajectory integrator for space simulation applications,
Advances in Space Research, Volume 54, Issue 8, 15 October 2014, Pages 1581-1589.

4. Atanassov, A.M., 2014, Parallel Solving of Situational Problems for Space Mission Analysis and Design. SES
2013, 283-288.

5. Atanassov,A.M. Method of Thread Management in a Multi-Pool of Threads Environments, SES 2014, 12 – 14
November 2014, Sofia, Bulgaria.

6. Atanassov, A.M., DEVELOPMENT CLASSES OF OBJECTS' DESCRIPTORS FOR SPACE MISSIONS
SIMULATION, proceedings of 9th scientific conference Space Ecology Safety, 2015, 2016, pp.

run:DO WHILE(cyc(counter)%name.NE.'END'.AND.cyc(counter)%name.NE.'end'.and.counter.LE.cyc(0)%num_com)
 SELECT CASE(TRIM(cyc(counter)%name))
 CASE('Init_Integ')
 CALL Data_AI(addresses of actual parameters)
 CALL Preparation_AI(addresses of actual parameters)
 counter= counter + 1
 CASE('Init_Union');
 CALL InitUnionPools(addresses of actual parameters)
 counter= counter + 1
 CASE('Init_SitAnal')
 CALL Data_Sit_Solver(addresses of actual parameters)
 CALL Preparation_Sit_Solver(addresses of actual parameters)
 counter= counter + 1
 CASE('Integ')
 CALL traekt_AI(AIs(cyc(counter)%s_AI_ind) %thread_par_adr, &
 AIs(cyc(counter)%s_AI_ind) %num_threads, &
 AIs(cyc(counter)%s_AI_ind) %counter_adr, &
 IVPs(cyc(counter)%s_AI_ind) %num_objects, &
 IVPs(StPrb(cyc(counter)%ini_StPr_ind)%IVPs_index)%t_adr, & !
 IVPs(StPrb(cyc(counter)%ini_StPr_ind)%IVPs_index)%dt_adr, &
 IVPs(cyc(counter)%s_AI_ind) %xvn_adr, &
 IVPs(cyc(counter)%s_AI_ind) %xvk_adr, &
 IVPs(cyc(counter)%s_IVP_ind)%transfer_data_adr)
 counter= counter + 1
 …
 CASE('Cycle')
 counter= counter + 1
 CASE('End cycle')
 cyc(cyc(counter)%back)%current_time= cyc(cyc(counter)%back)%current_time + &
 cyc(cyc(counter)%back)%step_in_time
 cyc(cyc(counter)%back)% shift_time= cyc(cyc(counter)%back)%shift_time + &
 cyc(cyc(counter)%back)%step_in_time
 counter= cyc(counter)%back
 CASE DEFAULT
 ! WRONG command!!!
 END SELECT
 END DO run

	6. Atanassov, A.M., DEVELOPMENT CLASSES OF OBJECTS' DESCRIPTORS FOR SPACE MISSIONS SIMULATION, proceedings of 9th scientific conference Space Ecology Safety, 2015, 2016, pp.

