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Abstract: Flexible approach for synthesis of complex simulation model containing different physical and 
mathematical models is presented. Different consequences of calculations in field of space mission design are 
based on some previously developed classes of objects. A simple command language for composition of 
cyclograms is presented. Execution of these cyclograms is based on developed interpreter.  
 
 

Introduction 

The development of flexible tools for space mission design and analysis has exclusive 
importance for decreasing of efforts, price and time [1]. The recent technological advances in the field 
of multicore processors and other components are challenges and good base for experiments in this 
direction. 

Algorithms and program system for multi-satellite missions and experiments [2] are under 
development at STIL-BAS, branch in Stara Zagora. Improving flexibility and possibilities for multi-
physics space simulations of the program system are shown in the present paper.  

 
Programming system for multi-satellite mission design 
 

The programming system for space mission design is under development. Execution of 
different types of tasks is possible. These tasks are related to orbital equations integration, geometric 
and physical quantities along the orbits, situation problems solving, satellite experiments simulation, 
visualization and etc. [2, 6].  

Unfortunate, calculation scenarios, containing simultaneously application of more than one 
actual integrator [3] and situation problems solver [4] using special developed union of pools model [5] 
for parallelization, wasn’t possible.  

 
Problem statement 
 

Logical mutually connected calculations will be treated as calculation flow. There are different 
levels of mutual connectivity. The higher level of connectivity demands mutual connection between 
results in the frame of one calculation flow. The low level of connectivity within the calculation flow is 
due to applying of unifying/common algorithms. Application of parallelization to one calculation flow 
depends from availability of appropriate platform and specifics of calculations. Two reasons are 
possible for calculation flows parallelization - possibilities for optimal use of computer system and 
development of complex multi-physic models and calculation algorithms. 

Each calculation flow could consist from one or more consecutive stages. The parallelization 
between calculation flows is possible related to particular stages only. The different calculation flows 
are executed asynchronously until point of synchronization when exchange of results between them is 
necessary.  

For instance, one calculation flow could contains orbital motion integration for set of satellites 
as first stage, calculation of different quantities heaving geometrical or physical nature as second 
stage, solving situation problems as third stage and etc. At the same time, a second calculation flow 
engaged with computation about other set of satellites is possible too. Other calculation flow could be 
related with space debris. Some exchange of results between separate flows after appropriated 
stages could be based on situation problems connected with mutual situations between objects 
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evolved in different flows. The realization of such scenarios demands synchronization between 
respective/relevant calculation stages from the calculation flows. 

“Computation flows” is program model for presentation of complex multi-physics applications 
based on higher abstraction level. This is formal thinking approach which demands appropriate 
specific program models and tools.  

The joining of some calculation flows put the question about effective use of multi-processor 
system. We will have in mind exclusively shared memory system below in this paper. 

 
Control of calculations 
 

Finite automata approach is applied for realization of flexible scheme of calculations’ control. 
The algorithm is based on series of commands (cyclogram) execution. The algorithm reads and 
recognizes a series of commands and transits in the relevant state related to some code execution. 
Additional tasks are included for initialization of actual integrators and situation processors, in 
additional to the basic tasks listed above. The compilation of particular variant of calculation scheme 
consists of ordering appropriated commands. The list of commands developed at the present stage is 
presented in table 1. 

 
Table 1. 
 

 
 

All commands are described by user-defined type command (fig. 1). This type contains 
different number of parameters/attributes and semantic specific for each command. The first 
parameter is common for all commands and contains the name. Other parameters of the 
commands are presented by integer or real types. Operator UNION is used for description of all 
variants of command types (fig. 1), because each command has individual format, 

The couple of commands Cycle and End_cycle are important construction for repetition of 
entire cyclogram or subseries of commands closed between them. All commands which must be 
repeated are inserted between the Cycle and End_cycle commands. The commands for initialization 
are placed at the beginning, before the command Cycle.  

 

Command name First parameter Second parameter Third parameter 
Init_Integ p_AI_ind p_IVP_ind  
Init_SitAnal ini_AI_ind ini_StPr_ind  
Init_Union    
Integ s_AI_ind s_IVP_ind  
'Integ Union' Union_ind   
'Trajekt param' t_IVP_ind   
'Sit anal' run_StPr_ind   
'Display' dsp_StPr_ind   
'Get_AI_rezult' u_IVP_ind   
'Cycle' begin_time final_time step_in_time 
End_cycle    
END    
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                    Fig. 1. User-defined type used for cyclogram commands definition  

 
The execution of the commands is based on object-descriptors heaving specific user-defined 

types [6]. These types appear as templates for description of objects which could be created and used 
for computational control. For instance, pool_par represents actual integrators and situation problem 
solvers. The type IVP_par represents the solving of initial value problems. The type TrajParam 
defines calculation of some parameters along the orbits. The types SitProblems and PoolThUnion 
are used for definition of situation problems and union of pools of threads. 

 
Command interpreter 
 

Finite automata approach is used for new version of the program system. Program fragment 
on figure 3 accepts series of commands and interprets them in sequent mode. The algorithm 
recognizes the current command and transit to the respective stage and call to corresponding solver 
or calculation code. Each command leads to calculation of portion of final results. Different primitive of 
calculations are used like elemental building units for assembling calculation models in one scientific 
field. A complex model can contains some objects from equal type. Every object could be presented 
through different characteristics or parameters. So each object is described through user-defined type. 
Such types are shown in [6]. Objects of the same type are united in class of objects. These classes 
are created by special polymorphic subroutine [6]. These types contain different specific attributes. 
Some of them represent geometric or physical quantities which accept values in some interval. Other 
attributes represent meta-data – addresses and sizes of data structures. 

Five object-descriptors are defined through separate user-defined types at the present stage. 
The access to particular object at random point of the program is possible by global class-descriptor 
(named common area in fortran) (fig. 2a). This common area contains the number of objects in the 
class and address of the array in computer storage containing objects of the class (fig. 2a). For 
example, named common area /c_AIs / contains descriptor of the class of parallel actual solvers 
based on pool of threads program model- integrators of ordinary differential equations and situation 
processor solvers. The class of “initial values problems” objects is accessible through named common 
area / c_IVPs / (fig. 2b). The class of situation problems is presented trough class-descriptor and 
common area / c_StPrs /. The class of “union of parallel solvers” could be accessed through common 
area / c_UPths /. Figure 2b illustrates the access to classes of objects based on pointers. 

 type     command                  !  
     character*17  name 
  UNION 
   MAP 
     integer num_com     ! The zero element     
                                       ! contain number of 
                                       ! commands 
   END MAP 
   MAP                            ! AI preparation 
     integer    p_AI_ind  ! (p)- za pointer 
     integer    p_IVP_ind 
   END MAP 
   MAP                            ! IVP initialization  
     integer   s_AI_ind      ! index of integrator  
     integer   s_IVP_ind   ! index of IVP  
   END MAP 
   MAP                                ! Init_SitAnal 
      integer    ini_StPr_ind  ! index to solver 
      integer    ini_AI_ind      ! index to intrgrator 
   END MAP 
   MAP       ! Creation and initialization of Union 
     integer  ins_AI_ind       ! index of the solver 
     integer  com_ind_integ ! multiple integration 
   END MAP 
   MAP                       ! Multiple IVPs integration 
     integer    Union_ind        ! index of Union 
     integer    index_IVP(0:10) 
     integer    union_atr(2) 
   END MAP 

   MAP             ! Get data after Union execution 
     integer    u_IVP_ind ! index of IVP 
   END MAP 
   MAP                   ! Traject. param. calculation 
     integer    t_IVP_ind 
   END MAP 
   MAP                                 ! Situation analysis 
     integer    run_StPr_ind ! index of solver 
     integer    run_AI 
   END MAP 
   MAP           ! command ‘Disply’ 
     integer    dsp_StPr_ind 
   END MAP 
   MAP                          ! Cycle 
     real*8       begin_time 
     real*8     current_time 
     real*8       final_time 
     real*8     step_in_time 
     real*8       shift_time 
     integer    end 
   END MAP 
   MAP                   ! End cycle 
     integer   back   ! counter return 'back' steps 
   END MAP 
  END UNION 
 end type  command 
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The object classes are dynamic objects. The addition of each new object to respective class is 
connected with changing of the address in the storage. 

 

 
 

Fig. 2. An access to classes of objects is shown. (a) Description of object classes. (b) Allocation of object classes 
according to addresses. 

 
The addresses of the real data, which are pointed as actual arguments, are contained in 

attributes of objects-descriptors. Each object-descriptor is used for simulations in the frame of one 
calculation flow. 

Figure 3 represents fragment of the interpreter of command series (cyclograms). Actual 
arguments of the subroutines don’t point directly to transmit data. The access to data addresses is 
provided. The data transmitting is provided through special developed object-descriptors [6]. Each 
command has specific parameters for synonymous access to necessary data. 

Actual parameters of command Integ for multi satellites’ orbits integration are presented on 
figure 3 in some details for illustration. Addresses of data passed as actual arguments to respective 
subroutines related to other commands are described through analogous approach.  

The sophisticated description of actual parameters which is shown on figure 3 is result from 
application of object-descriptors and command parameters for assigning command to particular 
calculation flow. The commands initiate usually big portions of calculations and so the pointed 
sophistication doesn’t decrease substantially the speedup. 

The command parameters play important semantic role connected with building of calculation 
algorithm. Except parameters which are defined in the course of cyclogram compilation, there are 
other hidden parameters which are used for control of cyclogram execution. For instance, the values 
of the two parameters End_cycle%back and End_cycle%end are determined from preprocessor 
depending from their mutual disposition in the frame of cyclogram. The first parameter provides the 
return of command counter to beginning of the cycle, and the second of them – exiting from the cycle. 

A preprocessor for preliminary command cyclogram analysis is under development. It checks 
the syntax of used commands and determines some of their parameters. The preprocessor executes 
an automatic adjustment of commands for cycle organization. 

  integer                 AIs_descriptor_adr 
  common  /c_AIs/num_AIs,AIs_descriptor_adr 
  type       (pool_par)     AIs(num_AIs)   
!__________________________________ 
  integer                   IVPs_descriptor_adr 
  common  /c_IVPs/num_IVPs,IVPs_descriptor_adr 
  type       (IVP_par) IVPs(num_IVPs)  
!__________________________________ 
  integer                     TrPas_descriptor_adr 
  common  /c_TrPas/num_TrPas, TrPas_descriptor_adr 
  type      (TrajParam) TrPas(num_TrPas) 
!__________________________________ 
  integer                     StPrs_descriptor_adr 
  common   /c_StPrs/num_StPrs,StPrs_descriptor_adr  
  type      (SitProblems) StPrb(num_StPrs) 
!_____________________________________ 
  integer                     UPths_descriptor_adr 
  common  /c_UsPTh/num_UsPth,UPths_descriptor_adr 
  type      (PoolThUnion) Union_atr(num_UsPth) 
                        (a) 

  POINTER(     AIs_descriptor_adr,AIs)  
  POINTER(  IVPs_descriptor_adr,IVPs) 
  POINTER(TrPas_descriptor_adr,TrPas) 
  POINTER( StPrs_descriptor_adr,StPrb) 
  POINTER(UPths_descriptor_adr,Union_atr) 
                        (b) 
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Fig. 3. Fragment of subroutine Drive_M. This fragment realizes interpretation of commands. The command Integ 

is presented in details. 

 
Conclusion 

A development of interpreter of commands’ cyclogram is presented. The application of such 
interpreter allows more flexible and adaptable execution of computation scenarios when complex 
multi-physic model are simulated.  

Further development of presented approach demands development of interactive tools 
(appropriated dialogue) for definition of objects’ attributes and cyclogram compilation. 
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run:DO WHILE(cyc(counter)%name.NE.'END'.AND.cyc(counter)%name.NE.'end'.and.counter.LE.cyc(0)%num_com) 
              SELECT CASE(TRIM(cyc(counter)%name)) 
                               CASE('Init_Integ') 
                                  CALL  Data_AI(addresses of actual parameters) 
                                  CALL  Preparation_AI(addresses of actual parameters) 
                                        counter= counter + 1 
                               CASE('Init_Union'); 
                                  CALL  InitUnionPools(addresses of actual parameters) 
                                       counter= counter + 1 
                               CASE('Init_SitAnal') 
                                  CALL  Data_Sit_Solver(addresses of actual parameters) 
                                  CALL  Preparation_Sit_Solver(addresses of actual parameters) 
                                     counter= counter + 1 
                               CASE('Integ') 
                                  CALL  traekt_AI(AIs(cyc(counter)%s_AI_ind) %thread_par_adr, & 
                                                                AIs(cyc(counter)%s_AI_ind) %num_threads, & 
                                                                AIs(cyc(counter)%s_AI_ind) %counter_adr, & 
                                                              IVPs(cyc(counter)%s_AI_ind) %num_objects, & 
                                                              IVPs(StPrb(cyc(counter)%ini_StPr_ind)%IVPs_index)%t_adr, & ! 
                                                              IVPs(StPrb(cyc(counter)%ini_StPr_ind)%IVPs_index)%dt_adr, & 
                                                              IVPs(cyc(counter)%s_AI_ind) %xvn_adr, & 
                                                              IVPs(cyc(counter)%s_AI_ind) %xvk_adr, & 
                                                              IVPs(cyc(counter)%s_IVP_ind)%transfer_data_adr) 
                                     counter= counter + 1 
                               … 
                               CASE('Cycle') 
                                     counter= counter + 1 
                               CASE('End cycle') 
                                      cyc(cyc(counter)%back)%current_time= cyc(cyc(counter)%back)%current_time + & 
                                                                                                        cyc(cyc(counter)%back)%step_in_time 
                                      cyc(cyc(counter)%back)%    shift_time= cyc(cyc(counter)%back)%shift_time + & 
                                                                                                        cyc(cyc(counter)%back)%step_in_time 
                                     counter= cyc(counter)%back 
                               CASE DEFAULT 
                                   !  WRONG  command!!! 
      END SELECT 
    END DO  run 
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